Chapter Two
The First Law of Thermodynamics

2.1 Introduction
When a system undergoes a thermodynamic cycle then the net heat supplied to the

system from its surroundings is equal to the net work done by the system on its

surroundings.
In svmbols.
$dQ —=$dW .o i s )

Where § represent the integral for a complete cycle.
()= heat energy ransfer , W= work enercy transfer

Or, can be written in this form .Y dQ =% dW
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Example:

In a certain steam plant, the turbine develops
1000kW. The heat supplied to the steam in the
boiler is 2800 KJ/kg, the heat rejected by the
system to cooling water in the condenser is 2100
KJ/kg and the feed pump work required to pump
the condensate back into the boiler is 5 KW.
Calculate the steam flow around the cycle in kg/s.

Given :
Work output from the turbine (from the system)=Wout = 1000 kW

Heat supplied to the steam in the boiler (system)
=Q;n = 2800 kJ/kg

Heat rejected by the steam(system) from the
condenser =Q,,,,= 2100 kJ/kg

Work input to the pump=W,,, =5 kW

Boiler Turbine

Condenser

From the condenservation of energy

(First law of thermodynamics)equation:

$AQ =X AW e e . (L),
Y dQ = Qi — Quur = 2800 — 2100 = 700}’:—2
Y dW = W,,, — W, = 1000 — 5 = 995 kI/,

9

700 X Mggeam = 995, Meam = 200 = 1.421 kg/s
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2.2 Corollaries of the First Law of Thermodynamics:
g1 o) Lalipall J ) (0 gl At gibal

The first law of thermodynamics, in the form of equation (2.1) , has a number of important

consequences(or values) which are stated in the form of corollaries( or results):

2.2.1 Corollary 1
There exists a property of a closed system called energy such that a change in its value is equal to the
difference between the heat supplied and the work done during any change of state. In other words,

there exists a point function such that

6Q —-—o6W =AE=E, —E1 or, Q—W =AE=E,—FE1l........ (2.2)

Fnergy E, is composed of internal energy, U, kinetic energy, K.E, and potential
energy, P.E)

i.e.. E = Internal energy + kinetic energy + Potential energy

or., E=U+KE+P.E
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In a closed system kinetic and potential energy effects generally play a negligible part, equation (2.2) may be
simplified to :

Q—-W =AU .o e v e e eer e (2.3)

The property U is called the internal energy of the system. The property U is the outcome of the first law

of thermodynamics. Physically, an increase in U is associated with a rise in the temperature of the system.

2.2.2 Corollary 2:
Conservation of energy The internal energy of a closed system remains unchanged if the system is
isolated from its surroundings.

Proof: By definition of an isolated system,Q =W =0, AU =U,—-U; =0

=0
Q ([Sojafe
W=0 Fster,)

AU =0



2.2.3 Corollary 3, Perpetual motion machine of the first kind

A perpetual motion machine of the first kind (pmml) is impossible.
Perpetual motion, is the action of a device that, once set in motion, would continue in motion forever, with no
additional energy required to maintain it. Such devices are impossible on grounds stated by the first and

second laws of thermodynamics.

Equation (2.1) states, that, if a net amount of heat is not supplied during a cycle, no net amount % 50 = % SW

of work can be obtained, that is

f&wzo, if f&on

The existence of a pmml would therefore violate the first law of thermodynamics.




2.2.4 Energy balance

The basis of the first law of thermodynamics is the law of conservation of energy which, for a system, can be
expressed as :

Net energy added to a system=Energy in — Energy out= increase in stored energy. But, for a system undergoing
a cycle, there 1s no change in the state of the system so that, the stored energy is zero. Hence :

tnergy invw = tnergy out

2.3 The Perfect Gas

2.3.1 The Characteristic Equation of State for Ideal Gas: E

The equation %/ = R, is called the characteristic equation of a state of a perfect gas. The constant R is called

the gas constant. Each perfect gas has a different gas constant.
Units of R are Nm/kg.K or kJ/kg.K
Usually, the characteristic equation is written as:

Pv=RT................e..e..c......2.4 or PV=mRT ... ...... ... e et cr e e .. 2.5
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- The characteristic equation in another form, can be derived by using kilogram mole as a unit.
The kilogram-mole is defined as a quantity of a gas equivalent to M kg of gas,

where M is the molecular weight of the gas (e.g., since the molecular weight of oxygen is 32, then 1 kg mole of
oxygen is equivalent to 32 kg of oxygen).

M=nM ...... ... .. ceivev vv e ee e e (2.6)

Where m=mass , n= number of mole , M= Molecular mass. Substituting for m from eq.(2.6) in eqn.(2.5)

gives: PV =nMRT, or MR=-—

According to Avogadro's hypothesis, the volume of 1 mole of any gas is the same as the volume of 1 mole of
any other gas when the gases are at the same temperature and pressure. Therefore % is the same for all gases at

the same value of p and T. That is the quantity is a constant for all gases. This constant is called the universal
gas constant and is given the symbol, R,,.

PV R
~ MR =R, = T 2.7, or PV =nR,T, since MR = R,,Then R = ﬁo AV (7K )
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It has been found experimentally that the volume of 1 mole of any perfect gas at

1 bar and 0°C is approximately 22.71 m?.

V _ 1x105x22.72 Nm kJ

P
There for from eq.(2.7) R, = nT - Ix(0°C+273) 8314.3 — = 8.3143 ———

Example : What is the value of gas constant for oxygen that has a molecular
weight of 32?

R—Rﬂ—8314—2598N kg.K
g e ’ m/kg.



2.3.2 Specific Heats
The specific heat of a solid or liquid is usually defined as the heat required to raise
unit mass through a one-degree temperature rise.

- for small quantities, we have
dQ = mcdT
Where m= mass , c=specific heat, and dT= temperature rise

Only two specific heats for gases are defined.

- specific heat at constant volume, cv
-specific heat at constant pressure, cp

We have dQ = mc,dT for a reversible non-flow process at constant Pressure



We have dQ = mc,dT for a reversible non-flow process at constant Pressure

Integrating eqns. (2.9) and (2.10), we have

Flow of heat in a reversible constant pressure process|
Q =mce,(Ty—T;)-ccvii00.(2:11)

Flow of heat in a reversible constant volume process
Q=M Ty —Ty)eivavsiuit (2.12)

In case of real gases, ¢, and ¢, vary with temperature. But s suitable average
value may be used for most practical purpose.
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2.3.3 Joule's Law

Joule's law states that:" The internal energy of a perfect gas is a function of the
absolute temperature only"

] To evaluate this function let 1 kg of a perfect gas be heated at constant volume
i.e u=f(T) According to the non-flow energy equation,

dQ =du+dw
L Q= du
o =icaltl K is integral constant
dQ = du = c,dT whenT = 0,u = 0 (Joule's Law) . K =0

At constant volume for a perfect gas, from

u=c,T..........(2.13)
eqn.(2.12), for 1 kg

For mass m

) =MEUAT 2 — Ty )sscassnon (2.12) |
(T, 1) U =mnm. Cv (2 14')

When the volume remains constant the dW =0
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Gain in internal energy,

Equation (2.15) gives the gains of internal energy for a perfect gas between two states for any

process, reversible or irreversible.

2.3.4 Relationship Between two Specific Heats
Consider a perfect gas being heated at constant pressure from T1 to T2 . According to non-flow
equation,

Q=U-Up+W
Q=mc,(T,—T{)+W
In a constant pressure process, the work done by the fluid,

W=PWV,—-Vy)=mR(T, —T¢)
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P1V1 = mRTl, and PZVZ = mRTz
In a constant process P, = P, = P in this case
Q=mc,(T; —T1) + mR(T, —T)

But for constant pressure process,

Q=m Cp(TZ —Ty)
By equating the two expression, we have

~ (e, +R) =c¢,

C,—C, =R ... it (2.16)

p

divided both sides by c,
Cp R . cp o o "
— =1l ——, if — = y(specificratio)
Cv Cv C‘U



, or ¢, = m e (1.164)

Similiarly by dividing eq (2.16) both side by c,, we can get

Cp =——— v vn e (2.16D)

The specific ratio(y) also varies with temperature, but this variation 1s very mild. For
monatomic gases, its value is essentially constant at Yy =1.667. Many diatomic gases,

including air, have a specific heat ratio of about y 4;,- =1.4 at room temperature.
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2.3.5 Enthalpy

In thermodynamics is the sum of internal energy(u) and pressure volume product(pv).
This sum is called Enthalpy (h)

h=u+Pv ........c.ceoceo v v e . (2.17)
the total enthalpy of mass, m, of a fluid can be
H= U+ PV), where H = mh

For a perfect gas,
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2.4 Application of first law of thermodynamics to non-flow or closed system

1. Réversible constant volume process

(v=constant) In a constant volume process:

(i) the working substance is contained in a rigid

vessel

(ii) work=0, since v=constant

Considering mass of the working
substance unity and applying first law
of thermodynamics to the process

Q = (uz—ul) —-W....

2
The work W =f Pdv=Pw,—v,)=0,asdv=0
1

e (2.18)

R Q = (uz—ul) = Cv(Tz - Tl) vhe rer mms wes we s (2 18(1),

Q = (Ux—U;) = mc,(T; —

00000000000000

(2.18b)

Constant Volume Process

» Constant-volume process---isochoric process, volume

does not change during the process.

—

@ p g
'©
o

Constant-

Svolume |
/' container

.-"'"\_ P,
)

Before

Fig.2.3 : Réversible constant volume process

[U = mu]

&

After

(h)

|“]_

|“|-

P
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2. Reversible constant pressure process (p=constant)

The masses maintain constant

Considering unit mass of WOI'killg pressure in the cylinder P Isobaric compression P lsobaric expansion
substance and Appling first law of -
thermodynamics to the process,

i.e., Non-Flow Energy Equation(NFEE): < i
Q=(u, —u)+w | 2
The work done = U

2 Initial :

- |

W=fpdv=p(vz—v1)=pvz—pv1 ‘ ;

1 F J Vv y V
Q = (uz + p2vy) — (U + p1v1) = hy — hy 8 € i .

i

[~ D1 =p2=D h=u+pv] ﬂ
Q=hy; —hy =c,(T, —Ty) Fig.2.4 Reversible constant pressure process

Where h= Enthalpy (specific), and ¢, = specific heat at constant pressure

For mass ,m, of working substance



3. Reversible Temperature or Isothermal Process (pv=constant, T=constant)

A process at a constant temperature is called an isothermal process

Pa
Considering unit mass of working substance and applying first law _Final state
to the process 2
I
I _Process path
Q= Uy —u)+W=c,(T,—T))+W=0+W |
| [nitial
I state
I
because T; = T, | &
| I
|
C | |
In this case pv=corp =— ¢ o
n p - p T v III"II'-' III'I'II \/
i I
| I
| I

, the work done , W
f 2 dv (28 v,

c— =c|lnv]..” =cln—

v
1 v 1 V1

(1)

Fig.2.6. Reversible isothermal process



The constant C can either be written as p;v; oras p,v, . since

pP1Vy = P2V, = constanr,C
Vs

i.e, W= P1U1fﬂv_ per unit mass of working substance
1

v
Q =W = plvllnv—z TETIEIRLE (2 e 2{])
1

For mass ,m, of working substance

Vv
Q=W = prlan—z (2 — 20a)

1
For isothermal process : p,V, = p,V,

V, P,
Vi P

Or, Q=W-=p,V,In2 e e ees (2 — 20Db)
P2
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4. Reversible Adiabatic Process pvY = ¢

An adiabatic process is one in which no heat is transferred to or from the Fluid (system) during the

process (i.e Q=0).
Such a process can be reversible or irreversible. The reversible adiabatic nonflow process will be
considered in this section.

Considering unit mass of working substance and applying first law to the process, or
Non-Flow Energy Equation (NFEE):

Q=(u,—uy)+WwW, Since Q = 0,the equation becomes 0= (u, —u)+W

To drive the general law for an adiabatic process : pv/ = ¢

To obtain a law relating p and v for a reversible adiabatic process let us consider the non-flow
energy equation in differential form,

dQ =du+dW for areversible process dW = pdv
~ dQ =du+pdv=0



Also for a perfect gas

RT
pv=RTorp=7

Sub p in previous eq to be

du + %dv =0, butu=c,T or du=c,dT

v Cp dT + %dv =0, or -~ c, g + gdv = 0 (dividing all term to T)

By integral all terms c.InT + Rlnv = Constant
L pv . . pv
By subsstituting T = R in equation to become cvln? + Rlnv = Constant
- . R
Dividing both sides by c,, ln% + . Inv = szsmt = Constant
v v
i - — R i - e
Again : c, oD or = ¥y —1

Hence substituting




v
ln% + (y — 1)Inv = constant

v
ln% + InvY~Y = constant

pv X vV
In B = constant
pv X vV X vt
In R = constant
p X vY
In R = constant
p X vY

= econstant — ~onstant

R
Since R = gas constant=constant

p X v¥ = R X constant = constant

. p X v¥ = constant

Expression for Work W :

A reversible adiabatic process for a perfect gas is shown on a p — v diagram in Fig. 2-7 :

T Thermally

P p 1 (p.,v.,T,) Adiabatic insulated walls
A YT Y expansion ‘L

curve

p X vY g98
gas

; 2
p, |----- "T"""""""'T[FJZ'VZ'TE}

Statel State?2

Fig. 2.7 : Reversible adiabatic process

The work of adiabatic process can be evaluated by integration

v2 v2 C v—y+1 U2
W = dv= | —dv=C|———

f o vY ‘—y +1f,,

V1 V1 1

W= et et et et e e e e (2.22)
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Also from Eqn.(2.25) :

Relationship between T ,V, and p :

By using equation pv=RT, the relationship between T-v and T-p vy P2 %
: = . (2.26)
may be driven as follows. v, D1
RT
pv = RT P Substituting Eqn.(2.26) in Eqn. (2.24):
RT =
substituting this value in the equation pv" = C to get 7_1;)' =C 0 (p? )*’Tl
= (22 s a2
T C ry Pi
or —.vY =— = constant,
v R
this can be written as
o From eq(2.24) and (2.27) , it can
TvY " =constant ... ...... ...... ... ... oo s o0 2. 23 be written that
From equation 2.23, Tlvl_1 = Tzvz_1
-1
T v, \' . = r1
Pt ( 2) e e 2.2 vi\"t (P2 ¥
T, \v1 g = e (2.28)
Vs Pi1

For an adiabatic process :
¥ Y
p1v1 = szg

v \Y
ie, E=(—1) oo (2.25)
P1 Uy
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From eqn. (2.21) , the work done in an adiabatic process per kg of gas is given by

W = {1y —u:)

W=c,(T,—T,)

Alsa , we Fnow that
R
Cp = Tl
Hence, substituting, we get
R(T,—-T
W— (Ty —T3)
y—1

Using equation pwv = RT

s (p1vy — pava)

W =1

This is the same expression obtained before as eqn. (2.22

w

_ P1V1 — P2V2
Yy—1

e 2.22)
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EXAMPLE 1: EXAMPLE 4-1 Boundary Work for a Constant-Volume Process

A rigid tank contains air at 500 kPa and 150°C. As a result of heat transfer to the surroundings, the
temperature and pressure inside the tank drop to 65°C and 400 kPa, respectively. Determine the boundary
work done during this process that are shown in the following figure. (cv=0.718 kJ/kg.K)

I
Solution 1: i
AIR Het 0F-—- ;
L
T, = 150°C i
Discussion This is expected since a rigid tank has a constant Fy = 400 kP 400 - — 3
volume and dV =0 in this equation. Therefore, there is no Ty=65C

boundary work done during this process.

== 1

Heat transfer = the change of internal energy

Q = (u; —uy) = 0.718 (65 — 150) = —61 kJ /kg

Q=(uz;—uy) = XK =—-61k]/kg

kg.K
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EXAMPLE 2: A frictionless piston—cylinder device contains 4.5 kg of steam at 414 kPa and 433 K. Heat is now
transferred to the steam until the temperature reaches 477 K. If the piston is not attached to a shaft and its
mass is constant, determine the work done by the steam during this process that are shown in Fig. Also
determine the heat add (Q).( Cp=1.8723 kJ/kg.K Cv=1.4108 kl/kg.K)

Solution 2:

W=mxP(vy, —v;) oo

(%) (%)
szPdvajdva(vz—vl) or
V1 (%1

Where, V = v*m

P, = 414 kPa

e Heat

————— e ———— g —
S N I S T ]

m=45k Area=W
B, =414kPag
W =45 X414 x 1000 x (0.52 — 0.467) = 98739 ] =99 kJ
2] =0-47m—3 vy =0.52m—3
kg kg

Q=(u;—uy))+W
Q=Hy—Hy = mc,(T, —Ty) = 4.5 X 1.8723 X (477 — 433) = 370 kJ

In constant pressure process there are heat transfer,change in internal energy, and work.



EXAMPLE 3: A piston-cylinder device initially contains 0.4 m3 of air at 100 kPa and 80°C. The air is now
compressed to 0.1 m3 in such a way that the temperature inside the cylinder remains constant. Determine the
work done during this process.

Solution 3:
The temperature remains constant so the process is Isothermal compression

C
PV =mRT =C or P=—

|4
v, v, P
W = deV— j v = Cin2 = py i
- B A A7 ﬁ
Vi 4 2
] ] [T| lr."--. I =R0*C =con=L
In case we do not have all properties of Air some . ™ i
replacements can be done. AT | L")
T | N
Vz P1 ;--:.'-Illll' I __T |
P,V; can be replaced byP,V, or by mRT.Also,— = — M = 100 kTa | |
V1 P, I=#PC = const | |
i ]

= |
e
=5

W =PV In'2 =100 x 0.4 x |1 01) _ 55.5 k
- Aty = ' noa) = TN

v, kN



Example4: A sample of ideal gas is initially at temperature T, = 400 K, pressure p, = 5 bar and occupies a
volume V, = 0.6 m’. The gas expands adiabatically to a state 2. The processes is reversible.

Givens: R =8.31J/mol K; CV = (3/2)R, V, = 3 m3

1.Draw the thermodynamic process in a PV diagram .

2.Calculate the pressure in state 2 using the adiabatic process equation (between states 1 and 2). What is the
temperature in this state?

3.Calculate the work done, the internal energy change and the heat exchanged by the gas.
P(Pa)|

_ Pri-v 1
Solution:

P,Vi = P,V}

y 1.67
P,=P <ﬁ> :5x105x<%> = 34016 Pa
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We can use the equation of an ideal gas applied to state 2 to calculate the temperature.
But first, we need to determine the number of moles in the sample of ideal gas.

By applying the equation of state of an ideal gas to state 1:

P1V1=TLRT1

PV 5x105%0.6
n=-=1= =90
RT, 8.31x400

By applying the same equation to state 2:

PV, 34016x3

27 nR 90 x8.31 = 136K

In adaibatic processQ =0, 0= (u, —uq) + W, W=—(u; —uy) = (ug —up)

3
Wi_p = AU =ncy(T; = T;) = 90 X 5 X 8.31 X (400 — 136) = 296168 = 296k



5. Polytropic Reversible Process (pv™ = constant).

The general law of polytropic (General) process is pv" = constant where , n is a polytropic index that its
value is constant.

We know that for any reversible process, W = [ pdv

vn+1

. C :
For a process in pv" = constant,we have p = —,where Cis a constant
% _ _ _ _
7 v2n+1 _ v1n+1 v1n+1 _ v2n+1
~W=C| —=C =C =C
o —n+1 n—1
V1 1

Since the constant C can be written as p,v7] orp,v}, substituting for C

-n+1

It follows also that for any polvtropic process , we can write

—n+1 —n+1
W — p1VivL " — vz vt p ey
n—1 —zz[—l) eenn(2.31)
P 2.
The following relations can be derived (following the same procedure as was
P1V1—P2V2 done under reversible adiabatic process)
W= ( ) ......... 2.29)
n—-1 TZ 7y n—1
: ) = (F—J ener (2.32)
R(T1-T» 1 72
or W= ( ) ......... (2.30)
n-1 T (P2 %
= e R .2 5§
Tl {Plj



Heat ransfer during polyviropic process (for perfect gas pv=RT) :

Uzsing non-flow energy equation, the heart flow/transfer during the process

can be found,

Q=(u;—uy) +W

R(T, —T;)
oW o
Cy -.TZ Tl.] + n—1
R(Ty —T;) :
Q=———"—0c,(T1—T2)
Also
R
Ll
On substituting
L 8 (Ty—T,) Ty—T,
Q—m.1 2. L}"_ULI 2)

RN EEEY

_R(T;—T)(y—1-n+1) R(T;—-T;)(y—n)

(r—1)(n—-1) T (y—1n—1)
= (y —m)R(T, —T,)
T y-1Dn-1)

Or

N ¥—n ! _R(Tl—sz :
q_(r_l)_w l..w_w..........{z.s-i_]

In a polyvtropic process, the index n depends only on the hear and work quanriries
during the process.
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I‘[li'pﬂl]’tl‘ﬂpltpn]tﬁﬁﬂ the index n depends only on the heat and work quanrities

The various processes considered earlier are special cases of polviropic process
for a perfect gas. For example

(i) when n=0  pv® = constant i.e, p = constant : reversible constans

Pressire process

Le, v=constant : reversible constani volume process




(fii) when n=1  pyv=constani i.e I=constant, since
pv /T = constant for gas : reversible isothermal process p

(iv) when n =y,
pvY = constant. i, e.reversible adiabatic process

(v) when n=n , pv" = constant, reversible polytropic process

This is illustrated on a p-v diagram in Fig. 2.8,

(1) state 1 to state A is constanyt pressure cooling (n=0)

(1) state 1 to state B is isothermal compression (n=1) y
Fig. 2.8.

(1ii) state 1 to state C is reversible adiabafic compression (n = y) Similariv

(iv) state 1 to state D is constani volume heating (n = oo) (1) state 1 to state A is constant pressure heating (n=0)
(ii) state 1 to state B is fsothermal expansion (n=1).

(iii) state 1 to state € is reversible adiabatic expansion (n = y).

(iv) state 1 to D is constant volume cooling (n = =)




