>>	Shift Right	A>>2;//shift right by 2 places	
=_3	Bitwise AND assign	A $\&=$ B;// A=A&B	
=	Bitwise OR assign	A = B; // A=A B	
^=	Bitwise XOR assign	A ^= B; // A=A^B	
<= Bitwise shift left assign	Ritwice shift left assign	A <<= 2;//Shift left by 2	
	places and assign to A		
>>=	Bitwise shift right assign	A >>= 1;//Shift right by 1	
	Drwise sint fight assign	place and assign to A	

<u>Example</u>

<pre>#include<iostream.h></iostream.h></pre>	<pre>#include<iostream.h></iostream.h></pre>	
<pre>void main()</pre>	void main()	
{	{	
int A=42, B=12, C=24, D;	int A =20, D , E, F;	
$D = A^B;$	int $B = 18$, $C = 30$;	
C <<= 1;	$D = C^B;$	
A <<=2;	E = A & B;	
B >>=2 ;	F = C A ;	
cout<<"A="< <a<<endl;< td=""><td>cout <<"E="<<e<<endl;< td=""></e<<endl;<></td></a<<endl;<>	cout <<"E="< <e<<endl;< td=""></e<<endl;<>	
cout<<"B="< <b<<endl;< td=""><td>cout <<"F="<<f<<endl;< td=""></f<<endl;<></td></b<<endl;<>	cout <<"F="< <f<<endl;< td=""></f<<endl;<>	
cout<<"C="< <c<<endl;< td=""><td>cout <<"D="<<d<<endl;< td=""></d<<endl;<></td></c<<endl;<>	cout <<"D="< <d<<endl;< td=""></d<<endl;<>	
cout<<"D="< <d;< td=""><td>}</td></d;<>	}	
}		
The expected outputs are given below :	The expected outputs are given below :	
A = 168	E = 16	
B = 3	F = 30	
C = 48	D = 12	
D = 38		

7. Increment and Decrement Operators

They are used for increasing and decreasing a variable by unity. These operators may be placed before or after the variable name as shown in the following table.

Operator	Pre or post	Description
++k	Pre-increment	First increase the value of k by one then evaluate the
		current statement by taking incremented value.

k++	Post-increment	First use the current value of k to evaluate the current
		statements then increase k by unity.
— —k	Pre-decrement	First decrease the value of k by unity then evaluate the
		statement.
k	Post-decrement	First use the current value of k to evaluate the current
		statements then decrease k by unity.

Pre-increment	Post-increment
int a= 10, b= 11, c;	int a= 10, b= 11, c;
c=a+ ++b; //c=10+12=22, b=12	c=a+ b++; //c=10+11=21 , b=12

The following program illustrates the increment and decrement operators.

```
#include <iostream.h>
void main()
{
    int a = 6, p = 4,r=3,n =5,A,B,C,K ;
    A = 6 * ++n ;
    cout << "A = "<<A <<"\t n = " <<n <<endl;
    K = 5 * a-- ;
    cout<<"K = "<<K<<"\t a = " <<a << endl;
    B =r++ * r++ ;
    cout<< "B = "<<B<<"\t r = "<< r << endl;
    C = p-- * p--;
    cout<<"C = "<< C<<"\t p = "<< p << endl;
}</pre>
```

The expected output is given below:

 A = 36 n = 6

 K = 30 a = 5

 B = 9 r = 5

 C = 16 p = 2

<u>H.W.</u>

Evaluate the following expressions for m = 6, n = 2, a = 0, b = 0, c = 0, d = 0, and e = 0

(i) a+=4+ ++m*n ; (ii) b*=3+ --m*m ; (iii) c+=2 +m * ++m ; (iv) d*=2* + m*m-- ; (v) e--=2* ++m/m-- ;

PRECEDENCE OF OPERATORS

Precedence is an important aspect of operators. A list of operators and their precedence are given in the following table:

Operator	Description
()	Highest precedence given to parentheses. In case of several pairs of
	parentheses without nesting, they are evaluated from left to right.
++ and	Increment and decrement operators have the precedence over the other
	arithmetic operators. In case of several such operators, they are
	evaluated from left to right.
*,/,%	Multiplication, division and remainder operators are evaluated after
	increment and decrement operators. In case of several such operators,
	they are evaluated from left to right.
+, -	Plus and minus are evaluated last. If there are several such operators
	then they are evaluated from left to right.

<u>Example</u>

Evaluate the value stored in the variable 'result' in the following expressions using precedence of operators if a=5, b=20, c=10, d=4, e=7;

(a) result = a * b + c - d % e;
(b) result = a * ++b + c - d % e;
(c) result = ++a * b + (c - d) % --e;
(d) result = a * (b + c) - ++d % e;

<u>Solution</u>

- (a) result = 5 * 20 + 10 4 % 7 = 110
- (b) result = 5 * +20 + -10 4% 7 = 114, b = 21, c = 9
- (c) result = 5++ *20 + (10-4)% -7 = 101, a=6, e=6
- (d) result = ++5 * (20 + 10) ++4 % 7 = 180, a=6, d=5

<u>H.W.</u>

Evaluate the following expressions if y=2:

a) Z = 5 *y + 3*y*(10*y + 5/2);
b) Z = 7* y % 2 + 2*(3 + (y % 3 + 2));
c) Z = 7 % y *(y + 6*7) -5;
d) Z = 2* ++y + 3 * --y;

The sizeof() operator

This operator accepts one parameter, which can be either a type or a variable itself and returns the size in bytes of that type or object :

```
int x;
int y=sizeof(x);
a = sizeof (char);
```

Most of the mathematical functions are declared in the <math.h> header file, as shown in the table below.

Function	Description	Example
sin(x)	sine of x (x in radians)	sin(2) returns 0.909297
cos(x)	cosine of x (x in radians)	cos (2) returns -0.416147
tan(x)	tangent of x (x in radians)	tan(2) returns -2.18504
asin(x)	inverse sine of x (x in radians)	asin(0.2) returns 0.201358
acos(x)	inverse cosine of x (x in radians)	acos(0.2) returns 1.36944
atan(x)	inverse tangent of x (x in radians)	atan(0.2) returns 0.197396
exp(x)	exponential of x (base e)	exp(2) returns 7.38906
fabs(x)	absolute value of x	fabs(-2) returns 2.0
log(x)	natural logarithm of x (base e)[Ln(x)]	log(2) returns 0.693147
log10(x)	common logarithm of x (base 10)	Logl0(2) returns 0.30103
sqrt(x)	square root of x	sqrt(2) returns 1.41421
pow(x,p)	x to the power p	pow(2,3) returns 8.0
ceil(x)	ceiling of x (rounds up)	ceil(3.141593) returns 4.0
floor(x)	floor of x (rounds down)	floor(3.141593) returns 3.0

<u>Ex:</u> Write a program to evaluate the area and circumference of a circle.

```
#include<iostream.h>
#define PI 3.14159
void main()
{
    float radius, area, circum;
    cout<<"enter the radius of the circle"<<endl;
    cin>>radius;
```

}

```
area=PI*radius*radius;
circum=2*PI*radius;
cout<<"area="<<area<<endl;
cout<<"circumference="<<circum;</pre>
```

<u>Ex:</u> 6Ω , 3Ω resisters are connected in series across a 36v source, write a program to find the total current and the voltage of each resister.

```
#include<iostream.h>
void main()
{
    float R1, R2, V,I,V1,V2;
    cin>> R1>> R2>> V;
    I=V/(R1+R2);
    V1=I*R1;
    V2=I*R2;
    cout<<"I="<<I<<endl;
    cout<<"V1="<<V1<<" V2="<<V2;
}</pre>
```

H.W

1- Write a C++ program to read the grades of four subjects (M1, M2, M3, M4), then calculate and print the average.

2- Write a simple program to print your name, class.

3- Write C++ program to calculate sum of two numbers.